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Abstract
The analytic solutions of the one-dimensional Schrödinger equation for the
trigonometric Rosen–Morse potential reported in the literature rely upon the
Jacobi polynomials with complex indices and complex arguments. We first
draw attention to the fact that the complex Jacobi polynomials have non-
trivial orthogonality properties which make them uncomfortable for physics
applications. Instead we here solve the above equation in terms of real
orthogonal polynomials. The new solutions are used in the construction of
the quantum-mechanical superpotential.

PACS numbers: 02.30.Gp, 03.65.Ge, 12.60.Jv

1. Introduction

Supersymmetric quantum mechanics was originally proposed by Witten [1] as a simple
learning ground for the basic concepts of supersymmetric quantum field theories but soon
after it evolved into a research field on its own rights. Supersymmetric quantum mechanics
starts with the factorization of one-dimensional Hamiltonians,

H(y) = − h̄2

2m

d2

dy2
+ V (y), (1)

according to H(y) = A+(y)A−(y) + ε with A±(y) = (± h̄√
2m

d
dy

+ U(y)
)

where U(y) is the
superpotential and ε being a constant. Next it proves that if ψn(y) is an exact solution to the
H(y) eigenvalue problem, H(y)ψn(y) = Enψn(y), then A−(y)ψn(y) is an eigenfunction to
H̃ (y) = A−(y)A+(y) + ε corresponding to the same eigenvalue. In other words, knowing the
superpotential allows one to generate the H̃ (y) spectrum from the spectrum of H(y) and vise
versa. Moreover, in the case of zero ground state (gst) energy, knowing U(y) allows one to
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solve A−(y)ψgst(y) = 0 and obtain the ground state wave function. Knowing the ground
state wave function then allows one to recover the superpotential as

U(y) = − h̄√
2m

d

dy
ln ψgst(y). (2)

At that stage one employs the isospectral pair of operators H, and H̃ in the construction of the
super-Hamiltonian H as H = diag(H, H̃ ) and upon introducing ‘supercharges’ as

Q =
(

0 0
A− 0

)
, Q† =

(
0 A+

0 0

)
, (3)

proves them to satisfy the following superalgebra:

{Q,Q†} = H, {Q,Q} = {Q†,Q†} = 0, [Q, H] = [Q†, H] = 0. (4)

The ground state wave function to H is defined as

�gst =
(

ψgst

ψ̃gst

)
. (5)

The relationship to the field-theoretic SUSY is then established through the observation that
in case A−ψgst �= 0 then the supercharges do not annihilate the respecive vacua, Q�gst �= 0,

and Q†�̃gst �= 0, and SUSY is spontaneously broken. On the contrary, when A−ψgst(y) = 0,
then the supercharges annihilate the ground state which is a signature for the absence of charge
condensates there, and thereby for SUSY realization in the manifest (multiplet) Wigner–Weyl
mode. In this manner supersymmetric quantum mechanics relates to SUSY in field theory
where the róle of Q and Q† is taken by boson-fermion (and vise versa) ladder operators.

The above considerations clearly reveal the importance of knowing the exact solutions
of the quantum-mechanics Hamiltonians. These solutions are furthermore important in the
construction of higher dimensional charge algebras with more but two Hamiltonians (hierarchy
of Hamiltonians) [2]. The supersymmetric quantum mechanics manages a family of exactly
soluble potentials [3], one of them being the trigonometric Rosen–Morse potential (tRMP).
As long as this potential is obtained from the Eckart potential [4] by complexification of the
argument and one of the constants, also its solutions have been concluded from those of the
Eckart potential by the same procedure. In doing so, one ends up with Jacobi polynomials
with complex indices and complex arguments. However, such complex polynomials are
not comfortable for physical applications basically in view of their non-trivial orthogonality
properties [5, 6].

We here make the case that the trigonometric Rosen–Morse potential is exactly
soluble in terms of a family of real orthogonal polynomials and present the solutions.

The paper is organized as follows. In the next section we present the tRMP derivation
from the Eckart potential and draw attention to the non-trivial orthogonality properties of the
Jacobi polynomials with complex parameters and arguments. In section 3 we solve analytically
the one-dimensional Schrödinger equation with the trigonometric Rosen–Morse potential and
present the solutions. In section 4 we employ the exact ground state wave function in the
construction of the tRMP superpotential. The paper closes with brief concluding remarks.

2. The trigonometric Rosen–Morse potential as a complexified Eckart potential

Before proceeding further we first introduce a properly chosen length scale d and change
variables in the one–dimensional Schrödinger equation (1) to dimensionless ones according
to

z = y

d
, v(z) = V (dz)/(h̄2/2md2), εn = En/(h̄

2/2md2). (6)
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Figure 1. Eckart potential. The solid curve represents the potential while the dashed lines are the
energy levels. Note that the argument of this potential is unbound from above, i.e. 0 < z < ∞ and
the number of bound states is limited. The parameters of the displayed potential take the values
a = −1, b = 50.

Next we employ the Eckart potential [4],

v(z) = −2b coth z + a(a − 1) csch2z, (7)

where b > a2. The exact solutions to the Eckart potential are known and read:

ψn(x) = cn(x − 1)(βn−n−a)/2(x + 1)−(βn+n+a)/2P βn−n−a,−(βn+n+a)
n (x),

x = coth z, βn = b

n + a
.

(8)

Here, P (βn−n−a,−(βn+n+a))
n (x) are the well-known Jacobi polynomials [7, 8] with n � (b1/2−a),

and cn is a normalization constant. Equation (8) equivalently rewrites to

ψn(x) = cn(x
2 − 1)−(n+a)/2 e−βn arccoth xP (βn−n−a,−(βn+n+a))

n (x). (9)

The corresponding energy spectrum is determined by

εn = −(n + a)2 − b2

(n + a)2
. (10)

Form and energy spectra of the Eckart potential are illustrated by figure 1. Let us now
complexify the argument of the Eckart potential and one of its constants according to

z → −iz, or, equivalently, x −→ ix, b → ib. (11)

Substitution of equation (11) into (7) results in

v(z) = −2b cot z + a(a − 1) csc2 z, (12)

and thereby in the trigonometric Rosen–Morse potential [3] shown in figure 2.
In the literature [3] the solution of the Schrödinger equation with the trigonometric Rosen–

Morse potential is concluded from equation (9) through complexification of b and x leading
to

ψn(ix) = cn((ix)2 − 1)−(n+a)/2 e−βn arccoth ixP ((i βn−n−a),−(iβn+n+a))
n (ix). (13)



550 C B Compean and M Kirchbach

Figure 2. The trigonometric Rosen–Morse potential. The solid line represents the potential, while
the dashed lines are the energy levels. Note that the argument of this potential is bound between
0 < z < π and the number of states is unlimited. The potential parameters take the values
a = 1, b = 50.

In other words, these solutions need the Jacobi polynomials with complex indices and complex
arguments. Unfortunately, the complex Jacobi polynomials are not very well suited for physics
applications. Suffices to write down these polynomials explicitly,

P (A,B)
n (ix) = 2n(A + 1)n

(n + A + B + 1)n
2F1

(
−n, n + A + B + 1;A + 1|1 − ix

2

)
,

2F1

(
−n, n + A + B + 1;A + 1|1 − ix

2

)
= �(A + 1)

�(n + A + B + 1)�(−(n + B))

∫ 1

0
tn+A+B(1 − t)−(n+B+1)

(
1 − t

1 − ix

2

)n

dt,

A = iβn − n − a, B = −(iβn + n + a),

(14)

where 2F1(a, b; c|x) is the well-known hypergeometric function, and (· · ·)n is the Pochhammer
symbol of the expression in the parentheses, in order to become aware of the calculational
difficulties to be expected. It is obvious that one has to worry about the interplay between
indices and integration contours, a subject studied in [5, 6]. There the authors claim dependence
of the orthogonality properties on the indices and the integration contours. In order to avoid
all those difficulties we here search for real solutions of the one-dimensional Schrödinger
equation with the trigonometric Rosen–Morse potential.

3. The one-dimensional Schrödinger equation for the trigonometric
Rosen–Morse potential

3.1. The Sturm–Liouville method and the Rodrigues formula

For the sake of self-sufficiency of the representation we here review in brief the basics of the
Sturm–Liuoville technique for solving second order differential equations.
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Table 1. Special functions and their characteristics.

Name Symbol w(x) s(x) Interval Conditions

Hermite Hm(x) e−x2
1 (−∞, ∞)

Laguerre Lν
m(x) xν e−x x [0,∞) (ν > −1)

Jacobi P
(ν,µ)
m (x) (1 − x)ν(1 + x)µ (1 − x2) [−1, 1] (ν, µ > −1)

Gegenbauer Cλ
m(x) (1 − x2)λ−1/2 (1 − x2) [−1, 1] (λ > −1/2)

Legendre Pm(x) 1 (1 − x2) [−1, 1]
Chebyshev, type I Tm(x) (1 − x2)−1/2 (1 − x2) [−1, 1]
Chebyshev, type II Um(x) (1 − x2)1/2 (1 − x2) [−1, 1]

This work C
(a,b)
m+1 (x) (1 + x2)−µ e−2 b

µ cot−1 x
(1 + x2) (−∞, ∞) (µ = m + 1 + a)

The method of Sturm–Liouville [9] applies to differential equations of the type

d

dx

(
p(x)

dy

dx

)
+ q(x)y = −λw(x)y, (15)

and searches for the λ values that allow for a solution. The solution of equation (15),
where w(x) stands for the ‘weight’, or, ‘density’ function, are eigenfunctions of a Hermitian
differential operator on the space of functions defined by the boundary conditions. Some
special cases of the Sturm–Liouville type of differential equations allow for solutions by
means of the Rodrigues formula [7]. To be specific, for q(x) = 0, and p(x) = w(x)s(x),
where s(x) at most being a second order polynomial, the solution of equation (15) is given by a
family of orthogonal polynomials. The classical polynomials of Hermite, Laguerre, Legendre
and Jacobi are prominent examples for that.

In order to create the orthogonal polynomial solutions one considers the function [7]

Cm(x) = 1

w(x)

dm

dxm
(w(x)s(x)m), (16)

with C1(x), w(x) and s(x) satisfying the following conditions:

1. C1(x) is a polynomial of first order,
2. s(x) is a polynomial of at most second order and real roots,
3. w(x) is real, positive and integrable within a given interval [a, b], and satisfies the

boundary conditions

w(a)s(a) = w(b)s(b) = 0. (17)

The above three conditions seem quite restrictive indeed but nonetheless they allow for
the construction of all the classical orthogonal polynomials reported in the standard textbooks
[7–9]. The table shows all the ingredients of the Rodrigues formula required for the
construction of the respective orthogonal polynomials.

If in addition one demands an orthonormalized set of polynomials, one has to introduce
into equation (16) an additional constant, here denoted by Km, according to

Cm(x) = 1

Kmw(x)

dm

dxm
(w(x)s(x)m). (18)

In terms of Cm(x), the Sturm–Liouville equation takes the form

d

dx

(
w(x)s(x)

dCm(x)

dx

)
= −λmw(x)Cm(x), (19)
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or, equivalently,

s(x)
d2Cm(x)

dx2
+

1

w(x)

(
ds(x)w(x)

dx

)
dCm(x)

dx
+ λmCm(x) = 0, (20)

where

λm = −m

(
K1

dC1(x)

dx
+

1

2
(m − 1)

d2s(x)

dx2

)
. (21)

Note that

C1(x) = 1

K1w(x)

(
ds(x)w(x)

dx

)
. (22)

All classical polynomials can be obtained through the above procedure and vise versa. The
polynomials that can be obtained from the Rodrigues formula and which satisfy the three
conditions mentioned above are necessarily the classical orthogonal polynomials, a result due
to [10].

3.2. Solving Schrödinger’s equation for the trigonometric Rosen–Morse potential

In this section we present the solution of the one-dimensional Schrödinger equation for the
trigonometric Rosen–Morse potential as obtained in [11] and without any reliance on the
complex Jacobi polynomials. For this purpose we first have to reshape Schrödinger’s equation

d2R(z)

dz2
+ (2b cot z − a(a + 1) csc2 z + ε)R(z) = 0, (23)

to the Sturm–Liouville form in equation (20). To do so we first change variables to

R(z) = e−αz/2F(z), (24)

with α being a constant and then substitute in equation (23). After some simple algebraic
manipulations one arrives at

d2F(z)

dz2
− α

dF(z)

dz
+

(
2b cot z − a(a + 1) csc2 z +

((α

2

)2
+ ε

))
F(z) = 0. (25)

Changing once more variables to x = cot z in which case F(z) becomes a function of x
denoted by f (x), i.e.

F(z) → f (x), x = cot z, (26)

equation (25) takes the form(
2bx − a(a + 1)(1 + x2) +

((α

2

)2
+ ε

))
f (x) + (1 + x2)2 d2f (x)

dx2

+ 2(1 + x2)
(α

2
+ x

) df (x)

dx
= 0. (27)

Finally, upon substituting the factorization ansatz

f (x) = (1 + x2)−(1−β)/2C(x), (28)

into equation (27) and a subsequent division by (1 + x2)(1−β)/2 one finds as intermediate result
the equation(

(−β(1 − β) − a(a + 1)) +
(−α(1 − β) + 2b)x +

((
α
2

)2 − (1 − b)2 + ε
)

(1 + x2)

)
C(x)

+ (1 + x2)
d2C(x)

dx2
+ 2

(α

2
+ βx

) dC(x)

dx
= 0. (29)
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If equation (29) is to coincide in form with equation (20), the following conditions have to be
fulfilled:

−α(1 − β) + 2b = 0, (30)(α

2

)2
− (1 − β)2 + ε = 0. (31)

Substitution of equations (30), (31) into equation (29) amounts to

(1 + x2)
d2C(x)

dx2
+ 2

(α

2
+ βx

) dC(x)

dx
+ (−β(1 − β) − a(a + 1))C(x) = 0. (32)

Equation (32) relates to equations (20)–(22) via

−β(1 − β) − a(a + 1) = −m(2β + m − 1). (33)

Now by determining β from equation (33), substituting it into equations (30), (31) and shifting
m to m → n − 1, the following n-dependent constants are found:

βn = −(n + a) + 1, αn = 2b

n + a
, (34)

εn = (n + a)2 − b2

(n + a)2
, (35)

with n � 1.
In this way one encounters w(x) and s(x) as

wn(x) = (1 + x2)−(n+a) e−αn arccot x, (36)

s(x) = 1 + x2. (37)

The polynomials which resolve the tRMP Schrödinger equation are now obtained in exploiting
the Rodrigues formula (18) when rewritten in terms of n as

C(a,b)
n (x) = 1

Knw(x)

dn−1

dxn−1
(wn(x)s(x)n−1). (38)

The lowest C(a,b)
n (x) polynomials obtained in this fashion read

C
(a,b)
1 (x) = 1

K1
, (39)

C
(a,b)
2 (x) = 2

K2

(
−(1 + a)x +

b

2 + a

)
, (40)

C
(a,b)
3 (x) = 2

K3

(
(1 + a)(2a + 3)x2 − 2(2a + 3)

b

3 + a
x +

(
2b2

(3 + a)2
− (1 + a)

))
, (41)

C
(a,b)
4 (x) = 4

K4

(
−(1 + a)(2a + 3)(2 + a)x3 + 3(a + 2)(2a + 3)

b

(4 + a)
x2

− 3(2 + a)

(
2

b2

(4 + a)2
− (1 + a)

)
x +

(
2b3

(4 + a)3
− (3a + 4)

b

4 + a

))
, (42)
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C
(a,b)

5 (x) = 4

K5

(
(1 + a)(2a + 3)(2 + a)(2a + 5)x4 − 4(2a + 3)(2 + a)(2a + 5)

b

(5 + a)
x3

+ 6(2 + a)(2a + 5)

(
2b2

(5 + a)2
− (1 + a)

)
x2

− 4(2a + 5)

(
2b3

(5 + a)3
− (3a + 4)

b

5 + a

)
x

+

(
4b4

(5 + a)4
− 4b2

(5 + a)2
(3a + 5) + 3(2 + a)(1 + a)

))
, (43)

where x = cot z.
The above polynomials solve exactly equation (32) which can be immediately cross-

checked by back substituting equations (43) into equation (32). Employing symbolic
mathematical programs is quite useful in that regard.

Note that the solution was found under less rigid requirements but the ones listed
immediately after equation (16) above. Indeed,

• the roots of our s(x) function are imaginary (this is the only place where the
complexification of the Eckart potential seems to have left footprints),

• equation (17) turned out to be a rule that allows to be broken.

In that sense, the orthogonal functions found here must belong to a different class of
orthogonal functions.

Their orthogonality is obtained as∫ ∞

−∞

dx

s(x)
(wn(x))1/2C(a,b)

n (wn′(x))1/2C
(a,b)
n′ = δnn′ . (44)

Equation (44) shows convincingly that the new solutions have well-defined orthogonality
properties on the real axes, which qualifies them as comfortable wave functions in quantum-
mechanics applications.

The orthogonality condition for the wave functions Rn(z) reads∫ π

0
dz Rn(z)(Rn′(z))∗ = δnn′ . (45)

A version interesting for physical application (see the concluding section) is the one
with a = 0,

v(z) = −2b cot z, (46)

in which case the normalization constant is calculated as

Kn =
(

(n!)2n3(1 − e−2πb/n)

4b(b2 + n4)

)1/2

. (47)

The associated energy spectrum is given then by

εn = n2 − b2

n2
. (48)

Correspondingly, the wave functions for this case simplify and are found as

R1(z) = e−bz sin zC
(0,b)
1 (cot z),

R2(z) = e−bz/2 sin2 zC
(0,b)
2 (cot z),

. . .

Rn(z) = e−bz/n sinn zC(0,b)
n (cot z).

(49)
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(a) (b)

Figure 3. Wave functions for the first two levels in the trigonometric Rosen–Morse potential for
a = 0.25 and b = 1.

Wave functions for the first two (unnormalized) levels with a �= 0 are displayed in
figure 3.

4. The trigonometric Rosen–Morse superpotential

In this section we derive the trigonometric Rosen–Morse superpotential from the exact ground
state solution for which a �= 0 has been calculated as

R1(z) ∝ e−bz/(a+1) sina+1 z. (50)

Substitution of the latter equation (50) into equation (2) amounts to the following
superpotential:

U(z) = − b

a + 1
+ (a + 1) cot z, (51)

shown in figure 4. Correspondingly, the A±(z) operators are obtained as

A±(z) = ± d

dz
+ (a + 1) cot z − b

a + 1
. (52)

The corresponding Hamiltonian is then obtained identical to equation (12), as should be. The
supersymmetric companion of H(z), which is H̃ (z), becomes

H̃ (z) = − d2

dz2
− 2b cot z + (a + 1)(a + 2) csc2 z, (53)

and one finds the supersymmetric companions to the solutions as

R̃n(z)|(a,b) = Rn−1(z)|(a+1,b), (54)

where n > 1, and Rn−1(z)|(a+1,b) are among the exact solutions of the trigonometric Rosen–
Morse potential.

As a further possible application of the solutions found here we wish to mention the
construction of the so-called hierarchy of Hamiltonians [2], where one needs to have at ones
disposal exact orthonormalized functions for all levels because in this case one can pick up
any energy level, εn, and its wave function Rn(z). Obviously, equations (49) fully qualify for
that purpose.
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Figure 4. The trigonometric Rosen–Morse superpotential. The values of the displayed
superpotential parameters are the same as in figure 2.

Figure 5. Experimentally observed baryon resonances (lhs) N and (rhs) �. The dash-point
lines represent the mass average. Note that the resonances with masses above 2000 MeV are of
significantly lower confidence but those with masses below 2000 MeV where the degeneracy is
very well pronounced. Empty squares denote predicted (‘missing’) states.

5. Concluding remarks

To recapitulate, the knowledge on the real exact solutions of the one-dimensional Schrödinger
equation for the trigonometric Rosen–Morse potential obtained in this work allows for a
straightforward construction of all the necessary ingredients of the supersymmetric quantum
mechanics. Compared to the textbook complex solutions, the exact real solutions reported
here have the advantage of significantly simplifying the calculations.

In addition, the trigonometric Rosen–Morse potential is more but just one of the few
exactly soluble quantum-mechanical potentials. It joins as a new member of the smaller and
important group of potentials which generate physically relevant spectra. Indeed, in particle
physics one encounters [12] the measured excitation spectra of the nucleon (N), and the
so-called � particle, in turn displayed in figure 5.
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According to an observation due to [13, 14] and references therein, those spectra repeat
with an amazing accuracy the degeneracy patterns of the levels of the electron with spin in the
hydrogen atom but are characterized by very different mass splittings. The following mass
formula describes pretty well the averaged positions of the three narrow mass bands containing
the series of (n − 1) parity doubled states (with n = 2, 4 and 6) and with spins ranging from
1
2

±
to

(
n − 3

2

)±
together with the one unpaired maximal spin

(
n − 1

2

)P
state of either natural,

or, unnatural parity,

M(n;I ) − M0
(n;I ) = gI

n2 − 1

4
− fI

1

n2
, I = N,�. (55)

Comparison of the baryon mass formula with equation (48) reveals coincidence between the
baryonic and tRMP spectra. The underlying constituent dynamics of the excited baryons
has been found to be that of a quark-di-quark system [13]. In fact, in order to describe the
particle spectra one needs to solve the three-dimensional Schrödinger equation but this does not
cause much problems because upon separation of the variables in polar coordinates the radial
part of the three-dimensional Schrödinger equation reduces to that very same one-dimensional
Schrödinger equation (23) up to the centrifugal barrier term, l(l +1)/z2 (work in progress). All
in all, the trigonometric Rosen–Morse potential and its real orthogonal polynomial solutions
open new venues in the calculation of interesting observables in both supersymmetric quantum
mechanics and particle spectroscopy.
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